
International Journal of Teaching and Learning in Higher Education 2017, Volume 29, Number 2, 245-254
http://www.isetl.org/ijtlhe/ ISSN 1812-9129

An In-Depth Analysis of Teaching Themes and the Quality of Teaching in Higher

Education: Evidence From the Programming Education Environments

Belle Selene Xia
Aalto University

Education research in computer science has emphasized the research of web-based learning
environments as a result of the latest technological advancement in higher education. Our research
aim is to offer new insights on the different teaching strategies in programming education both from
a theoretical and empirical point of view as a response to the theory-scarce nature of the subject. We
have classified the teaching themes in computing education research based on the students'
experience and reviewed the respective teaching methods introduced by the previous literature in the
subject field. Our research results confirm that despite the benefits brought by technology to higher
education and the high quality of the programming courses, there exist challenges associated with
programming education environments that need to be addressed with further research. We bring up
the concepts of student-centered pedagogy and personalized learning environments in response to
the challenges faced by students in programming education. Specifically, we will analyze these
challenges via teaching strategies and by considering the students' needs in a collaborative learning
environment. Our research results are especially valuable to the understanding of the development of
the programming education environment. We will open up new research opportunities in the quality
management of distance learning.

As a result of technological advancement, research

in web-based learning environments has become ever
more important. Researchers in programming education
have confirmed both the benefits and the potential of
technology brought to pedagogy in higher education
(Sadler-Smith, Down, & Lean, 2000). While both
theoretical and empirical papers are published in the
subject field, research in programming education
environments is still theory-scarce (Fincher & Petre,
2004). In addition, Teague, Corney, Ahadi, and Lister
(2012) showed that students start to struggle with the
challenges associated with programming at the
beginning of the course. This phenomenon leads to
drop-outs and increasing difficulties with learning
programming in the latter part of the course, and these
challenges of programming education need to be dealt
with further research.

Lewis (2010) states that the goal of programming
education is to develop the students’ programming
competence and attitudes towards programming. The
aim is to teach students to understand the logic behind
programming. Specifically, Whalley and colleagues
(2006) showed that students who learn programming
successfully are able to produce correct codes and
explain the purpose behind these codes. Programming
skills can be measured via the level of understanding in
code-tracing tasks and the code-writing abilities, which
are closely related to the code-explaining ability
(Lopez, Whalley, Robbins, & Lister, 2008).
Nevertheless, the relationship between the code-writing
abilities and the code-explaining abilities is not directly
related, as novice programmers are able to write codes
based on familiar templates but may find it difficult to
trace codes and correct the bugs (Simon, 2009).
Previous research has established that the performance

of novice students in systematically writing and
explaining codes after introductory programming
courses is reflected as minimal competence, and thus
we will review some of the research on the challenges
of programming education in the following section.

Research on the Challenges of Programming
Education

Saeed, Yang, and Sinnappan (2009) found that the
technological impact on higher education has brought
challenges to teaching. The authors mention that one of the
primary challenges associated with the use of technology
in programming education is the lack of understanding of
the learners’ experience during such a process and their
perceptions of the technology use in supporting their
understanding. Below we have summarized some of the
learning challenges in programming education based on
the previous literature together with the teaching strategies
in the respective situations. The research work done by
Fincher and Petre (2004) has served as the foundation for
the learning challenges specified in Table 1. It is seen that
the typical learning challenges are related to knowledge
sharing from the course instructor to the students having
differing backgrounds. Students’ motivation to learn and
expectations may also pose challenges to the course
organizers. The solutions to these challenges require us to
identify and overcome these student misconceptions.

Student-Centered Pedagogy in Programming
Education

Education research in computer science has
emphasized the importance of studying the students’
behavior as a gateway to improve the set of existing

Xia Programming Education Environments 246

teaching practices (Herrington et al., 2003). In other
words, the teaching strategies to overcome these
challenges in programming education are highly
dependent on student-centered pedagogy. By studying
the student experiences in programming courses, this
offers important information on the design of
programming education that supports student learning
despite their individual differences in learning
preferences. Koka and Hein (2003) observed that
students' learning preferences and learning styles are
affected by the teacher’s feedback, learning challenges,
and the intrinsic motivation to learn. Thomas, Ratcliffe,
Woodbury, and Jarman (2002) found that successful
learning outcomes can be explained via these different
learning styles. The authors proposed that students’
preference on learning and their expectations should be
integrated in the design of programming courses via
well-organized learning resources. This confirms the
significance of our research, which is to evaluate
programming education from the students' point of view.

Wolf (2002) showed that an interactive web-based
adaptive learning environment, given its flexibility and
dynamic nature, allows a personalized learning
environment which accommodates different learning
styles. A student-centered approach in teaching can be
achieved through the application of andragogical
assumptions. The assumptions of andragogy address the
interests of the learners, cooperative learning, guided
interaction, and the active role taken by the learner
(Blondy, 2007). Chan (2003) suggests that the student
performance can be enhanced, and some of the
challenges of programming education, addressed by
tailoring the programming environment according to
the students’ needs and individual working styles.
Specifically, Bati, Gelderblom, and Biljon (2014) have
found that engaging students for deeper learning, using
support mechanism for improved class management,
aligning assessment activities, and creating closer
relationships and a sense of community among students
are effective instructional strategies in programming
teaching. According to the theory of constructivism,
successful learning outcomes can be attained when
learners' motivation is aligned with the teaching goals
of the course and students can be motivated to engage
in the learning process. As a matter of fact, the role of
student has become more important in programming
education design, as confirmed by researchers such as
Herrington and colleagues (2003).

Further Investigation on the Themes of Teaching in
Programming Education

Below we have classified the different themes of
teaching in a technology-oriented learning environment
based on the previous literature. It is seen that the
different themes of teaching are reflected as a result of

different teaching goals. Teaching methods that use
technologies in higher education are especially
significant in distance learning. Nevertheless, the
integration of technologies to higher education does not
always produce sound learning outcomes, and some of
the advanced programming tools used in programming
education seem to hinder learning when they are
difficult to use. In addition to textual instructions,
different visualization techniques are widely used in
programming education, and well-designed multimedia
messages are found to support learning. Teaching
methods may also include cooperating learning and
collaborative active techniques, such as pair
programming, to enhance successful learning outcomes.

Distance learning. The use of computing
technology and instructional design in learning has
opened new opportunities to choose new innovative
teaching methods. Especially distance learning has
attained a higher importance in computer science
education (Sadler-Smith et al., 2000).

Educational technology tools. Technological
innovation has opened new opportunities for learning.
Different educational technologies are utilized in
teaching. Learning efficiency can be enhanced via
appropriate educational technology tools (Clarke,
Flaherty, & Mottner, 2001).

Technology innovations. Technology innovations
are used to enhance students’ learning experience. A
measure of their success includes the extent of the skills
developed by the students after the course. However, it
is shown that technology innovations may not always
enhance learning (Dacko, 2001).

Multimedia learning Multimedia learning uses
words and pictures in learning. Compared to
communication involving words, well-designed
multimedia messages allow students to learn more
deeply. Here, the design of multimedia explanation is
the learning method used to achieve learning outcomes.
Visualization techniques are extensively used in
programming education (Mayer, 2003).

Peer feedback. The impact of using peers in the
evaluation of student performance was found to be
useful. Specifically, peer feedback was found to be
meaningful and effective in higher education. A
collaborative learning environment is also found to
support programming education (Reese-Durham, 2005).

Case studies. Cooperating learning techniques can
be combined with case studies in order to enhance
problem-solving and decision making skills in learning.
This type of learning technique is found to be more
useful than lectures and non-cooperative learning
(Baumberger-Henry, 2005).

Project-based learning. Teaching may be
deductive or inductive. Deductive teaching method
begins with a theory and then proceeds to the application
of theories. Inductive teaching methods include inquiry

Xia Programming Education Environments 247

learning, problem-based learning, project-based learning,
case-based teaching, discovery learning, and Just- In-
Time-Teaching (Prince & Felder, 2006).

Cooperative learning. Compared to the traditional
instructional learning approach, research results have
shown that instruction based on cooperative learning
yield significantly better achievement in terms of
academic performance (Doymus, 2007).

Self-directed feedback. Mastering the learning
technique of self-directed feedback, reinforcement, and
remediation of knowledge is proven to have a positive
effect on the transfer of knowledge, which is central to
learning (Lee & Kahnweiler, 2008).

Collaborative active learning. When students first
enroll to college and are not familiar with the course
topic, collaborative active learning activities are found
to be useful. Learning outcomes are measured as
academic performance in terms of grades (Saitta,
Gittings, & Geiger, 2011).

Statement of the Problem

In this study, we aimed to capture themes of

teaching in programming education via student
experiences and observations. Our research problem
was formulated as follows: how do students perceive
the different teaching themes of introductory
programming courses as a response to the challenges of
programming education? Specifically, our research
questions were specified as follows:

1. Why do students find programming education

difficult?
2. What are the themes of teaching that increase

student motivation to learn programming?

Our research goal was to collect data from the
students’ behavior in programming education
environments, analyze the data in order to identify
various behavioral patterns in the student experience,
and produce sound research results by evaluating how
those teaching in programming education can use this
information to produce sound learning outcomes. Our
paper is organized as follows. First, we will justify the
focus of our research based on the previous literature.
Next, we will compare the results obtained from the
literature review with the student data in order to
deepen our understanding of student-centered pedagogy
in programming education.

Method

Salinger, Plonka, and Prechelt (2008) emphasize that

a qualitative research approach is especially useful in
deriving meanings through conceptual description of a
programming experience. Our aim in this paper is to

capture new knowledge on programming education
based on the students’ experience. Therefore, qualitative
research was found to be useful and appropriate with
regard to our research question. As the method and
validity of content analysis was heavily dependent on the
researcher and the context in which the information was
analyzed, we made judgements on the variations and
approaches that were most suitable for our particular
research problem in this study. We also discuss possible
limitations and delimitations of the study.

Research Design

We used extensive student feedback collected via
open-ended questions in this study as our primary
empirical data. The amount and the quality of the data
were chosen in accordance with the research question.
Our interpretation of the data was made via inferences
based on content analysis, which admittedly may result
in some degree of bias. The interpretation of the outcome
of data was done by two researchers. The analysis of
programming education environments from the student
perspective was done in stages. First, we started by using
the existing learning resources on programming courses
at Aalto University to collect student data. Then we
developed an infrastructure that provided user modelling
and personalization. Thereafter, we explored several
ways to produce knowledge-based personalization of
these student experiences derived from concept analysis
and content indexing, which will be explained in the
following sub-sections.

Sampling

We collected student feedback from the
programming courses in Aalto University in Finland
from the years 2009 to 2013 through open-ended
questions and surveys to be analyzed by content
analysis. The programming course is arranged every
year in the spring and in the autumn. In 2013 the
primary programming language for the course was
Python. Specifically, this course had 4 hours of
lecturers, 32 hours of self-learning, 77 hours of
exercises, and 20 hours reserved for the exam and exam
preparation. During the sample years, the lecture format
stayed the same. The teaching goal of this course was to
equip the course participants with understanding in the
field and the skills of programming. The course
materials included both printed materials and course
book. This course also included an online forum where
the course participants could communicate with the
course organizers. The data were interpreted based on
the outcome of the student feedback per course period.
In terms of variables, the average student achievement
level, initial expectation of the students, and student
background, as well as the course instructor, may have

Xia Programming Education Environments 248

Table 1
Learning Challenges and Teaching Approaches in Programming Education

Programming Education Environments
 Learning Challenges Teaching Approaches

The cognitive learning theory emphasizes the importance
of individual differences in learning. These learning
styles result in a student's unique learning preference.
(Saeed et al., 2009)

Learning by doing and encourage knowledge integration
such as helping students to organize their ideas are found
to enhance coherent understanding. (Anzai & Simon,
1979)

Students adopt inappropriate attitudes and beliefs towards
learning that interfere with the learning process and
obtaining successful learning outcomes. (Lewis, 2010)

According to constructivism, learning involves the
interpretation of information, and student attitude can be
affected via a learner-centered approach to teaching.
(Herrington, Oliver, & Reeves, 2003)

Programming misconceptions, such as linguistic
misconceptions, arise from inappropriate transfer of
knowledge. (Bayman & Mayer, 1983)

The instructor identifies learning misconceptions and
their causes while devising ways to resolve them in a
systematic manner. (Thota & Whitfield, 2010)

Previous programming experience and expectations of the
course interfere with the motivation to learn and produce
results. (Bonar & Soloway, 1989)

The instructor may provide interaction and social support
for learning such as supervised lab activities and online
collaborative discussion. (Blondy, 2007)

Computational models and syntax used in programming
are difficult to understand especially for novice students.
(Kahney, 1983)

The instructor may begin with simple and consistent
computational models and use animations as an aid to
learning algorithms. (Hundhausen, 2002)

The content and quality of the learning materials do not
reflect the course goals nor do they assist students in
grasping new knowledge. (Dacko, 2001)

Learning materials must support learning and the quality
of the materials is reflected in learning outcomes and
student performance in the exams. (Zuckerman, Arida, &
Resnick, 2005)

The programming skills learned in school are context-
dependent and cannot be automatically transferred and
used elsewhere. (Csikszentmihalyi, 1991)

Programming skills enhance problem-solving skills and
other skills which may be conducive to professional
career. (Lopez et a., 2008)

changed per course base, which admittedly may have
had an impact on the interpretation of results.

Procedures

Hopkins and King (2010) confirm the benefit of
content analysis for social scientists as an effective
method to analyze text data. One of the main benefits of
content analysis is its allowance for empirical study of a
social phenomenon through documentary text data. One
of the primary goals in using content analysis in this
study was to categorize text patterns and literature in an
unbiased and reliable manner. Therefore, formal
content analysis is used to make generalizations from
the student feedback via classifications. According to
the Heisenberg Principle, the very research process
produces the potential for bias. When it comes to the
reliability of the results, it is acknowledged that content

analysis, just as other research methods, might result in
some degree of bias. Nevertheless, as a research
method, content analysis is a systematic and objective
method of describing contextual information. The
benefits of content analysis are its context-sensitive
nature and flexibility in terms of research design.

In terms of the reliability and validity issues of the
data analysis procedure and findings, the challenges of
our research approach admittedly existed. First, reliable
information was needed in the first place, for reliable
analysis and student feedback may not always contain
all the information needed to be studied. Using content
analysis as the primary research method in the present
study might have also resulted in some degree of
researcher bias. We aimed to minimize the bias
produced by the data and the methods via good
scientific practice. Specifically, more than one
researchers analyzed the collected data in order to reach

Xia Programming Education Environments 249

a final consensus on the outcome of the analysis.
Moreover, we aimed to demonstrate the link between
our research results and the data by describing the
analysis process in detail. Furthermore, as the method
and validity of content analysis is heavily dependent on
the researcher and the context in which the information
is analyzed, we made own judgments on what
variations and approaches were most suitable for our
particular research problem in this study.

Summary of Results

Areias and Mendes (2007) confirm that computer
programming is difficult to learn and requires extensive
work from students. According to student feedback, the
level of difficulty is higher for students with no prior
background in programming. Therefore, the designers of
programming courses need to consider program design,
the complex features of the programming language, and
the lack of programming experiences among novice
students. As learning programming involves formulating
algorithms and transferring them to a programming
language, understanding the syntax of the language and
being able to execute and trace different program
statements were especially challenging for students with
no prior experience in programming. In addition to the
challenges of learning programming that are classified in
Table 1, research results show that students also had
difficulties in installing and using the programming
environment, understanding the role of programming
constructs, learning the semantics of programming
structures, and finding compilation errors based on the
system feedback. These students did not seem to
comprehend the strictness of the programming languages
and the underlying notional machine. Therefore, selecting
a strategy for an initial approach to teaching programming
required us to understand the students' experience of the
programming courses and what kind of learning resources
students found helpful in learning programming.

In 2009, we collected extensive and detailed
feedback from 461 students, in 2010 from 390 students,
in 2011 from 363 students, in 2012 from 229 students,
and in 2013 from 212 students. The student profiles
included students from different departments. That is,
the student profiles included both students with and
without prior programming experiences. It is interesting
to note that the student profiles not only included
novice students, but also students who had studied more
than five years in the same university.

In 2009, 61% of the respondents were satisfied
with the demand of the course. In 2010 the percentage
was 66%, in 2011 the percentage was 67%, in 2012 the
percentage was 67%, and in 2013 the percentage was
72%. Thus, the student satisfaction towards the
programming courses has steadily increased since 2009.
The student satisfaction is reflected by the incremental

improvements made in the course with regard to the
quality of the lectures, course materials, supportive
tools, and programming exercises. In 2009, the average
grade given for the lectures was 2.82/4, the grade given
for exercises was 2.98/4, the grade given for the
materials was 3.16/4, the grade given for the exam was
2.73/4, and the grade given to the usefulness of the
course was 2.78/4. Since then student satisfaction has
increased with regard to how the course is organized. In
2013, the average grade given to the lectures was
2.87/4, the grade given to exercises was 3.36/4, the
grade given to the materials was 3.33/4, the grade given
to exam was 2.91/4, and the grade given to the
usefulness of the course was 3.15/4.

We listed the different teaching strategies in Table 1
as a response to the typical learning challenges faced by
the students. Patriarcheas and Xenos (2009) have found
that some of these teaching strategies are significant in
terms of the student participation and the creation of a
personalized learning environment. The student
experiences on the various themes of teaching described
in Table 2 and Table 3 in terms of the course lectures,
exercises, learning tools, and materials can be used to
construct a personalized learning environment where
student-centered pedagogy is emphasized to enhance the
learning outcomes of programming education. Hopson,
Simms, and Knezek (2001) has shown that the student-
centered pedagogy in a technology-rich learning
environment enhances high-order cognitive skills, which
are required to learn programming. Moreover, the
authors acknowledge that similarities and differences
between online learning and the traditional classroom
learning environment are most evident in terms of the
course design, the level of interaction and the respective
teaching effect on the students.

Table 2 summarizes the challenges associated with
teaching of the introductory programming courses,
including student motivation challenges and knowledge
sharing failures, as we have shown in Table 1. Table 2
also lists the excerpts taken from student feedback in
respective to the difficulties associated with the
programming courses. When it comes to the course
exercises, typical challenges were related to the time
schedule and the varying level of difficulties of
exercises. Other challenges associated with
programming education included the mismatch between
the student expectations and the teaching goals set by
the course, as well as students having difficulties in
synthesizing the topics to be learned. Table 3
summarizes the motivational themes associated with the
programming courses together with the respective
excerpts taken from feedback results. The themes
associated with the well-designed programming courses
included competent lecturers and effective course
assignments. Active learning, hands-on activities, and
materials having exemplary solutions helped students to

Xia Programming Education Environments 250

Table 2
Difficulties Associated with the Programming Courses

Format Themes Specifications Student Feedback
Lectures Focus The lecture focused too

much details on the
basics.

“The information conveyed in the lecture was not
always useful to advanced students.”

Clarity The pace of the lecture
was too fast leaving
gaps unexplained.

“The information conveyed in the lecture was not
always clear and related to the core of the course.”

Usefulness Students skipped classes
and learned directly
from the book.

“Many of the students have never gone to the course
lectures.”

Quality The quality of the
lecture was poor and
demotivating.

“The instructor was not very motivational in terms of
the course atmosphere.”

Exercises Time The students were not
always given enough
time to complete all the
course exercises.

“There was not enough time to complete the
exercises.”

Instruction The exercise instructions
were not clarified in
advance.

“The exercise instructions were difficult to understand
from time to time.”

Difficulty Some of the exercises
were found to be too
difficult, especially for
novice students.

“The exercise was too mathematically intensive for
novices.”

Expectation The exercise did not
respond to student
expectations.

“Some of the exercises were too long, and thus were
not expected by some of the students.”

Tools Usability The programming tool
was too difficult to use.

“The programming tool was difficult to use and too
detailed.”

Purpose The programming tool
did not enable easy
finding of bugs.

“The programming tool did not enable easy finding of
programming bugs.”

Grading The programming tool
fined too harshly for
small mistakes.

“Some students felt that the programming tool had
allocated the points in an unfair manner.”

Feedback The programming tool
did not provide enough
guidance.

“The programming tool did not always give
instructions on how to fix the bugs.”

Materials Relatedness The course material did
not relate to the course
exercises.

“Some of the students did not use all of the materials
provided by the course.”

Content The course material
contained too much
texts with no key points.

“For advanced programmers, the course material
contained too much information.”

Demonstration The course material
lacked demonstrations
and visual aids.

“The course materials contained too much texts,
which may in times hinder understanding.”

Availability The course material was
not easily available.

“The availability of all the course materials was not
clear to all of the students.”

Xia Programming Education Environments 251

Table 3
Motivational Themes Associated With the Programming Courses

Format Themes Specifications Student Feedback
Lectures Lecturer The lecturer was competent and

knowledgeable.
“The instructor is knowledgeable and presented the
subject by considering the needs of the students.”

 Style The lecture motivated students to
participate and learn.

“The examples and exercises were useful to go through
with the instructor in a step-wise fashion.”

 Audience The lecturer considered the
background of the students.

“For those novice students, the lecture was found to be
well organized with a memorable beginning.”

 Interest The lecture contained interesting
materials not found in the book.

“The instructor has gone through interesting materials
not covered in the course.”

Exercieses Level The exercise level proceeded from
easy to difficult.

“The difficulty level proceeded logically from easy at
the beginning and challenging at the end.”

 Hands on The exercises enabled learning by
doing, which was an optimal learning
style for some of the students.

“The exercise enabled learning by doing.”

 Goal The exercise supported the teaching
goal of the course.

“The exercises had good instructions and supported
the course goals.”

 Complexity The exercise was complex enough to
capture student interest.

“The exercises were found to be interesting and varied
with various levels of difficulty.”

Tools Online The programming tool supported
distance learning and enabled students
to earn course points.

“The programming tool supported distance and online
learning.”

 Consistency The programming tool worked
consistently without mistakes.

“The programming tool worked consistently without
mistakes.”

 Technology The programming tool reflected
advanced technology.

“The programming tool reflected advanced technology
and is one of the best course tools.”

 Importance Students participated the course
because of the programming tool.

“The programming tool was one of the reasons why
students participated in the course.”

Materials Readability The course material was clear to read
with real-world problems.

“The course materials were consistent and clear to
read.”

 Concreteness The information of the course
materials was tailored to the needs of
the students.

“The course material showed how to code and debug
programs.”

 Relevance The course materials closely followed
the lecture knowledge.

“Specific information was relatively simple to find from
the given material.”

 Example The course material contained
supportive examples.

“In addition to the core information, exercise examples
were found to be conducive to learning.”

practice their programming skills. In terms of the
learning tools used in the programming courses,
challenges and possibilities are both associated with the
usability of these tools. Finally, it is important for the
course materials to be concise and clear.

Discussion and Conclusion

Thompson (2008) defines learning programming as
the process of understanding and applying programming
knowledge to practice by solving computing problems in
an innovative manner. Lister and colleagues (2006)
found that successful programmers are able to produce
innovative solutions to computing programs. Détienne
and Soloway (1990) distinguished the techniques that
experienced programmers use when trying to

comprehend a program. When tracing a program and
analyzing its execution to determine what operations
occur and how its states change, experienced
programmers may use either generic or specific values
when tracing a program's execution. Thota and Whitfield
(2010) introduced strategies to design introductory
programming courses from constructivist and
pedagogical points of view that address these challenges
of programming education and student misconceptions
via the available learning resources. In this study we
found that the course instructor may address these
student misconceptions by devising sound teaching
strategies to overcome these challenges associated with
programming education. In fact, some of the factors that
affect programming education are known to affect
education processes in general, but there are also specific

Xia Programming Education Environments 252

ones relevant to programming courses. These factors are,
for example, prior attitude and programming
experiences, materials and tools used to support
programming, and the active involvement of students in
the programming courses via learning by doing.

Universities have developed advanced tools to
support programming education. Examples include
TRAKLA2, JSav, UUhistle, jsParsons, and mobile
parsons. In addition to the tools that are developed to
support learning, virtual learning environments and
learning resources have also been integrated into
programming education. As examples, the A+ learning
environment integrates a number of tools under the
same user interface. Innovative learning resources have
been introduced for course Programming 1, CSE-
A1110. Likewise, Algoviz OpenDSA learning
resources have been used for Data structures and
algorithms courses (Helminen, Ihantola, Karavirta, &
Malmi, 2012). By adopting these tools and learning
environments we are able to collect data from their
usage and get regular information on the user
experience of these tools and environments.
Specifically, we are able to get course and task
evaluation results for the course participants,
submission data, course quizzes, log data about how
students interact with various assignments, and log data
about how students read and interact with learning
resources. These collected data can then be combined in
a database in order to allow easy query. Using these
data, it is possible to produce adaptive guidance to best
resources, adaptive textbook, adaptive visualization,
and adaptive feedback in order to improve the whole
learning system through personalized guidance.

Our research goals is to collect data from the
students’ usage of programming education
environments with regard to the quality of the course.
We choose to analyze the data in order to identify
various behavioral patterns among the students and
provide feedback to the students regarding to the usage
of these tools to support their studies. The quality of the
course can be analyzed via the resources allocated to
the course in terms of lectures, materials, supportive
tools, and programming exercises. We investigate
student behavior in both treatment and control group
settings, as well as longitudinal settings (Brusilovsky et
al., 2010). While studying data-driven personalization
in IR and Recommendation Systems areas, we have
seen that all kinds of recommender approaches and
content analysis (LDA) research approaches are found
to be useful. We have found that successful
programming courses are well organized in terms of
computing exercises and learning tools.

Maloney et al. (2004) specified that web-based
learning tools support student-centered pedagogy.
Fernandez and Sanchez (2003) found that the benefits
of using these programming tools to support learning

include the possibility to support students to study
intuitively and visually. Specifically, Hundhausen
(2002) found that the algorithm visualization
technology is effective in programming education,
offering learning exercises where students engage in
visualization-related activities that are cognitively
demanding. As a matter of fact, Zuckerman and
colleagues (2005) stated that in teaching abstract
problem domains, special learning elements and design
materials with the purpose to foster learning are
indispensable; examples include the use of multimedia
messages and visualization techniques to support
student learning.

Technological advancement has had a significant
impact on higher education, especially from the
teaching point of view. The challenges of programming
education remain a popular topic of research; some of
the challenges include poor progression and retention
rates associated with introductory programming
courses. We have found some of the possible
explanations behind the poor progression and retention
rates of introductory programming courses based on the
student experiences in terms of the course lecturers,
course exercises, the learning tools used in the course,
and the course materials, as these themes have a vital
impact on the student confidence, performance, and
study habits in acquiring programming knowledge. In
response to these challenges of programming education,
Falkner and Falkner (2012) analyzed the student
pedagogy from the social constructivist and
community-based learning perspectives. The teaching
methods used in constructivist learning, which are by
nature collaborative, and the social aspect of
constructivist learning enhance engaging and
productive learning experiences as a result of group
learning. We have confirmed in this study that
collaboration in a programming environment via, for
example, pair programming is vital and enhances
learning efficiency. In terms of future research, it would
be interesting to define the themes of teaching and
devise ways to measure learning outcomes in distance
learning, as compared to learning in a traditional
classroom setting, based on the student experience. We
could also expand the existing research work to include
more advanced data (log) driven personalization.

References

Anzai, K., & Simon, H. A. (1979). The theory of

learning by doing. Psychological Review, 86(2),
124–140.

Areias, C., & Mendes, A. (2007). A tool to help
students to develop programming skills.
Proceedings of the 2007 international conference
on Computer systems and technologies, ACM.

Bati, T. B., Gelderblom, H., & Biljon, J. (2014). A

Xia Programming Education Environments 253

blended learning approach for teaching computer
programming: design for large classes in Sub-
Saharan Africa. Computer Science Education,
24(1), 71-99.

Baumberger-Henry, M. (2005). Cooperative learning
and case study: Does the combination improve
students’ perception of problem-solving and
decision making skills. Nurse Education Today,
25(3), 238-246.

Bayman, P., & Mayer, R. E. (1983). A diagnosis of
beginning programmers' misconceptions of basic
programming statements. Communications of the
ACM, 26(9), 677-679.

Blondy, L. C. (2007). Evaluation and application of
andragogical assumptions to the adult online
learning environment. Journal of Interactive
Online Learning, 6(2), 116-130.

Bonar, J., & Soloway, E. (1989). Preprogramming
knowledge: A major source of misconceptions in
novice programmers. In E. Soloway & J. C.
Spohrer (Eds.), Studying the novice programmer
(pp. 324-353). Hillsdale, NJ: Lawrence Erlbaum.

Brusilovsky, P., Sosnovsky, S., Lee, D., Yudelson, M.,
Zadorozhny, V., & Zhou, X. (2010). Learning SQL
programming with interactive tools: From
integration to personalization. ACM Transactions on
Computing Education, 9(4), 19, pp. 1-15.

Chan, D. S. K. (2003). Validation of the clinical
learning environment inventory. Western Journal
of Nursing Research, 25(5), 519-532.

Clarke, I., Flaherty, T. B., & Mottner, S. (2001).
Student perceptions of educational technology
tools. Journal of Marketing Education, 23(3),
169-177.

Csikszentmihalyi, M. (1991). Flow: The psychology of
optimal experience. New York, NY: Harper
Collins.

Dacko, S. G. (2001). Narrowing skill development gaps
in marketing and MBA programs: The role of
innovative technologies for distance learning.
Journal Marketing Education, 23(3), 228-239.

Détienne, F., & Soloway, E. (1990). An empirically-
derived control structure for the process of program
understanding. International Journal of Man-
Machine Studies, 33(3), 323-342.

Doymus, K. (2007). Effects of a cooperative learning
strategy on teaching and learning phases of matter
and one-component phase diagrams. Journal of
Chemical Education, 84(11), 1857-1860.

Falkner, K., & Falkner, N. J. G. (2012) Supporting and
structuring “contributing student pedagogy” in
computer science curricula. Computer Science
Education, 22(4), 413-443.

Fernandez, A., & Sanchez, J. M. (2003). CGRAPHIC:
Educational software for learning the foundations
of programming. Computer Applications in

Engineering Education, 11(4), 167-178.
Fincher, S., & Petre, M. (2004). Computer science

education research. London, UK: Taylor & Francis
Group.

Helminen, J., Ihantola, P., Karavirta, V., & Malmi, L.
(2012). How do students solve parsons
programming problems: An analysis of interaction
traces. In Proceedings of the Ninth Annual
International Conference on International
Computing Education Research (ICER '12) (pp.
119-126). New York, NY: ACM.

Herrington, J., Oliver, R., & Reeves, T. C. (2003).
Patterns of engagement in authentic online learning
environments. Australian Journal of Educational
Technology, 19(1), 59-71.

Hopkins, D. J., & King, G. (2010). A method of
automated nonparametric content analysis for
social science. American Journal of Political
Science, 54(1), 229-247.

Hopson, M. H., Simms, R. L., & Knezek, G. A. (2001).
Using a technology-enriched environment to improve
high-order thinking skills. Journal of Research on
Technology in Education, 34(2), 109-119.

Hundhausen, C. D. (2002). Integrating algorithm
visualization technology into an undergraduate
algorithms course: Ethnographic studies of a social
constructivist approach. Computers & Education,
39(3), 237–260.

Kahney, H. (1983). What do novice programmers know
about recursion? In Proceedings from CHI'83:
Human Themes in Computing Systems (pp. 235-
239). New York, NY: ACM.

Koka, A., & Hein, V. (2003). Perceptions of teacher’s
feedback and learning environment as predictors of
intrinsic motivation in physical education.
Psychology of Sport and Exercise, 4, 333-346.

Lee, C. D., & Kahnweiler, W. M. (2008). The effect of
mastery learning technique on the performance of a
transfer of training task. Performance Improvement
Quarterly, 13(3), 125-139.

Lewis, C. M. (2010). How programming environment
shapes perception, learning and goals: Logo vs.
scratch. In Proceedings of the 41st ACM technical
SYMPOSIUM on Computer SCIENCE
EDUCATion (pp.346-350), ACM.

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-
Doxas, K., Hanks, B., Hitchner, L., Luxton-Reilly,
A., Sanders, K., Schulte, C., & Whalley, J. L.
(2006). Research perspectives on the objects-early
debate. SIGCSE Bulletin, 38(4), 146–165.

Lopez, M., Whalley, J., Robbins, P., & Lister, R.
(2008). Relationships between reading, tracing and
writing skills in introductory programming. In
Proceedings of the Fourth International Workshop
on Computing Education Research, ICER ’08 (pp.
101–112), ACM.

Xia Programming Education Environments 254

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B.,
& Resnick, M. (2004). Scratch: A sneak preview. In
Proceeding of the Second International Conference
on Creating, Connecting and Collaborating through
Computing (pp. 104-109), IEEE.

Mayer, R. E. (2003). The Promise of multimedia learning:
Using the same instructional design methods across
different media. Learning and Instruction, 13, 125-139.

Patriarcheas, K., & Xenos, M. (2009, August).
Asynchronous distance education forum-
Brainstorming vs. Snowballing: a case study for
teaching in programming didactics. In International
Conference on Web-Based Learning (pp. 322-331).
Springer Berlin Heidelberg.

Prince, M. J., & Felder, R. M. (2006). Inductive
teaching and teaching methods: Definitions,
comparisons and research bases. Journal of
Engineering Education, 95(2), 123-138.

Reese-Durham, N. (2005). Peer evaluation as an active
learning technique. Journal of Instructional
Psychology, 32(4), 338-343.

Sadler-Smith, E., Down, S., & Lean, J. (2000). Modern
teaching methods: Rhetoric and reality. Personnel
Review, 29(4), 474-490.

Saeed, N., Yang, Y., & Sinnappan, S. (2009). Emerging
web technologies in higher education: a case of
incorporating blog, podcasts and social bookmarks
in a web programming course based on students’
learning styles and technology preferences.
Educational Technology & Society, 12(4), 98-109.

Saitta, E. K. H., Gittings, M. J., & Geiger, C. (2011).
Learning dimensional analysis through
collaboratively working with manipulatives.
Journal of Chemical Education, 88(7), 910-915.

Salinger, S., Plonka, L., & Prechelt, L. (2008). A
coding scheme development methodology using
grounded theory for qualitative analysis of pair
programming. Human Technology, 4(1), 9-25.

Simon (2009). A note on code-explaining examination
questions. In A. Pears & C. Schulte (Eds.),
Proceedings of The 9th Koli Calling International
Conference on Computing Education Research
(pp. 21–30), Koli, Finland.

Teague, D., Corney, M., Ahadi, A., & Lister, R. (2012).
Swapping as the “hello world” of relational
reasoning: replications, reflections and extensions.
In M. de Raadt & A. Carbone (Eds.), Proceedings
of the 14th Australasian Conference on Computing
Education (ACE ’12), (pp. 87–93) Australian
Computer Society, Inc.

Thomas, L., Ratcliffe, M., Woodbury, J., & Jarman, E.
(2002). Learning styles and performance in the
introductory programming sequence. In Proceeding of
the 33rd SIGCSE Technical Symposium on Computer
Science Education, (pp. 33-37), Australian Computer
Society, Inc..

Thompson, E. (2008). How do they understand?
Practitioner perceptions of an object-oriented
program (Unpublished doctoral thesis). Massey
University, Auckland, NZ.

Thota, N., & Whitfield, R. (2010) Holistic approach to
learning and teaching introductory object-oriented
programming. Computer Science Education, 20(2),
103-127.

Whalley, J. L., Lister, R., Thompson, E., Clear, T., Robbins,
P., Kumar, P. K. A., & Prasad, C. (2006). An
Australasian study of reading and comprehension skills
in novice programmers, using the bloom and solo
taxonomies. In Proceedings of the 8th Australasian
Conference on Computing Education (pp. 243–252),
Australian Computer Society.

Wolf, C. (2002). Towards an interactive web-based adaptive
learning environment to address individual learning
styles. European Journal of Open, Distance and E-
learning, 1-14. Retrieved from
http://www.eurodl.org/materials/contrib/2002/2HTML/
iWeaver.pdf

Zuckerman, O., Arida, S., & Resnick, M. (2005).
Extending tangible interfaces for education: digital
Montessori-inspired manipulatives. In Proceedings
of the SIGCHI Conference on Human themes in
Computing Systems (pp. 859-868).

BELLE SELENE XIA is a Researcher at the Department of
Information and Computer Science at the Aalto University
School of Science. Previously she was a Project Manager
for the Software Business and Engineering Laboratory at
the Department of Computer Science and Engineering in
the Aalto University School of Science and Technology.
Her education includes a Bachelors in Science and
Technology in Computer Science from the Helsinki
University of Technology, as well as a Masters in Science
and Technology from the same university. She has collected
a wide range of international working experiences from
companies such as HiQ International, Helsinki Op Bank,
Euroclear PLC, Asahi Kasei Corporation, and Louis
Vuitton. Additionally, she has worked for Research
International Finland, which is a prominent research partner
of customer behavior in Finland. Her current research
concentrates on a financial economics project at the
University of Ghent in Belgium.

Acknowledgements

The author is grateful for the key comments presented
by Prof. Dr. Lauri Malmi and distinguished researcher
Dr. Päivi Kinnunen, as well as their valuable
contribution to this study. The author would like to
thank Florilla Consulting Company for funding of this
project. The author is also grateful to the anonymous
reviewers for their helpful and constructive comments.

